Segmentation and localisation of whole slide images using unsupervised learning

نویسندگان

  • Hazem Hiary
  • Raja' S. Alomari
  • Vipin Chaudhary
چکیده

Digital pathology has been clinically approved for over a decade to replace traditional methods of diagnosis. Many challenges appear when digitising the whole slide scan into high resolution images including memory and time management. Whole slide images require huge memory space if the tissue is not pre-localised for the scanner. The authors propose a set of clinically motivated features representing colour, intensity, texture and location to segment and localise the tissue from the whole slide image. This step saves both the scanning time and the required memory space. On average, it reduces scanning time up to 40% depending on the tissue type. The authors propose, using unsupervised learning, to segment and localise tissue by clustering. Unlike supervised methods, this method does not require the ground truth which is time consuming for domain experts. The authors proposed method achieves an average of 96% localisation accuracy on a large dataset. Moreover, the authors outperform the previously proposed supervised learning results on the same data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitosis Extraction in Breast-Cancer Histopathological Whole Slide Images

In this paper, we present a graph-based multi-resolution approach for mitosis extraction in breast cancer histological whole slide images. The proposed segmentation uses a multi-resolution approach which reproduces the slide examination done by a pathologist. Each resolution level is analyzed with a focus of attention resulting from a coarser resolution level analysis. At each resolution level,...

متن کامل

Multi-resolution graph-based analysis of histopathological whole slide images: Application to mitotic cell extraction and visualization

In this paper, we present a graph-based multi-resolution approach for mitosis extraction in breast cancer histological whole slide images. The proposed segmentation uses a multi-resolution approach which reproduces the slide examination done by a pathologist. Each resolution level is analyzed with a focus of attention resulting from a coarser resolution level analysis. At each resolution level,...

متن کامل

Unsupervised Texture Image Segmentation Using MRFEM Framework

Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...

متن کامل

Unsupervised Texture Image Segmentation Using MRFEM Framework

Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...

متن کامل

Extraction and 3D Segmentation of Tumors-Based Unsupervised Clustering Techniques in Medical Images

Introduction The diagnosis and separation of cancerous tumors in medical images require accuracy, experience, and time, and it has always posed itself as a major challenge to the radiologists and physicians. Materials and Methods We Received 290 medical images composed of 120 mammographic images, LJPEG format, scanned in gray-scale with 50 microns size, 110 MRI images including of T1-Wighted, T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IET Image Processing

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2013